Skip to main content

/containers

Manage OpenAI code interpreter containers (sessions) for executing code in isolated environments.

FeatureSupported
Cost Tracking✅
Logging✅ (Full request/response logging)
Load Balancing✅
Proxy Server Support✅ Full proxy integration with virtual keys
Spend Management✅ Budget tracking and rate limiting
Supported Providersopenai
tip

Containers provide isolated execution environments for code interpreter sessions. You can create, list, retrieve, and delete containers.

LiteLLM Python SDK Usage​

Quick Start​

Create a Container

import litellm
import os

# setup env
os.environ["OPENAI_API_KEY"] = "sk-.."

container = litellm.create_container(
name="My Code Interpreter Container",
custom_llm_provider="openai",
expires_after={
"anchor": "last_active_at",
"minutes": 20
}
)

print(f"Container ID: {container.id}")
print(f"Container Name: {container.name}")

Async Usage​

from litellm import acreate_container
import os

os.environ["OPENAI_API_KEY"] = "sk-.."

container = await acreate_container(
name="My Code Interpreter Container",
custom_llm_provider="openai",
expires_after={
"anchor": "last_active_at",
"minutes": 20
}
)

print(f"Container ID: {container.id}")
print(f"Container Name: {container.name}")

List Containers​

from litellm import list_containers
import os

os.environ["OPENAI_API_KEY"] = "sk-.."

containers = list_containers(
custom_llm_provider="openai",
limit=20,
order="desc"
)

print(f"Found {len(containers.data)} containers")
for container in containers.data:
print(f" - {container.id}: {container.name}")

Async Usage:

from litellm import alist_containers

containers = await alist_containers(
custom_llm_provider="openai",
limit=20,
order="desc"
)

print(f"Found {len(containers.data)} containers")
for container in containers.data:
print(f" - {container.id}: {container.name}")

Retrieve a Container​

from litellm import retrieve_container
import os

os.environ["OPENAI_API_KEY"] = "sk-.."

container = retrieve_container(
container_id="cntr_123...",
custom_llm_provider="openai"
)

print(f"Container: {container.name}")
print(f"Status: {container.status}")
print(f"Created: {container.created_at}")

Async Usage:

from litellm import aretrieve_container

container = await aretrieve_container(
container_id="cntr_123...",
custom_llm_provider="openai"
)

print(f"Container: {container.name}")
print(f"Status: {container.status}")
print(f"Created: {container.created_at}")

Delete a Container​

from litellm import delete_container
import os

os.environ["OPENAI_API_KEY"] = "sk-.."

result = delete_container(
container_id="cntr_123...",
custom_llm_provider="openai"
)

print(f"Deleted: {result.deleted}")
print(f"Container ID: {result.id}")

Async Usage:

from litellm import adelete_container

result = await adelete_container(
container_id="cntr_123...",
custom_llm_provider="openai"
)

print(f"Deleted: {result.deleted}")
print(f"Container ID: {result.id}")

LiteLLM Proxy Usage​

LiteLLM provides OpenAI API compatible container endpoints for managing code interpreter sessions:

  • /v1/containers - Create and list containers
  • /v1/containers/{container_id} - Retrieve and delete containers

Setup

$ export OPENAI_API_KEY="sk-..."

$ litellm

# RUNNING on http://0.0.0.0:4000

Custom Provider Specification

You can specify the custom LLM provider in multiple ways (priority order):

  1. Header: -H "custom-llm-provider: openai"
  2. Query param: ?custom_llm_provider=openai
  3. Request body: {"custom_llm_provider": "openai", ...}
  4. Defaults to "openai" if not specified

Create a Container

# Default provider (openai)
curl -X POST "http://localhost:4000/v1/containers" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"name": "My Container",
"expires_after": {
"anchor": "last_active_at",
"minutes": 20
}
}'
# Via header
curl -X POST "http://localhost:4000/v1/containers" \
-H "Authorization: Bearer sk-1234" \
-H "custom-llm-provider: openai" \
-H "Content-Type: application/json" \
-d '{
"name": "My Container"
}'
# Via query parameter
curl -X POST "http://localhost:4000/v1/containers?custom_llm_provider=openai" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"name": "My Container"
}'

List Containers

curl "http://localhost:4000/v1/containers?limit=20&order=desc" \
-H "Authorization: Bearer sk-1234"

Retrieve a Container

curl "http://localhost:4000/v1/containers/cntr_123..." \
-H "Authorization: Bearer sk-1234"

Delete a Container

curl -X DELETE "http://localhost:4000/v1/containers/cntr_123..." \
-H "Authorization: Bearer sk-1234"

Using OpenAI Client with LiteLLM Proxy​

You can use the standard OpenAI Python client to interact with LiteLLM's container endpoints. This provides a familiar interface while leveraging LiteLLM's proxy features.

Setup​

First, configure your OpenAI client to point to your LiteLLM proxy:

from openai import OpenAI

client = OpenAI(
api_key="sk-1234", # Your LiteLLM proxy key
base_url="http://localhost:4000" # LiteLLM proxy URL
)

Create a Container​

container = client.containers.create(
name="test-container",
expires_after={
"anchor": "last_active_at",
"minutes": 20
},
extra_body={"custom_llm_provider": "openai"}
)

print(f"Container ID: {container.id}")
print(f"Container Name: {container.name}")
print(f"Created at: {container.created_at}")

List Containers​

containers = client.containers.list(
limit=20,
extra_body={"custom_llm_provider": "openai"}
)

print(f"Found {len(containers.data)} containers")
for container in containers.data:
print(f" - {container.id}: {container.name}")

Retrieve a Container​

container = client.containers.retrieve(
container_id="cntr_6901d28b3c8881908b702815828a5bde0380b3408aeae8c7",
extra_body={"custom_llm_provider": "openai"}
)

print(f"Container: {container.name}")
print(f"Status: {container.status}")
print(f"Last active: {container.last_active_at}")

Delete a Container​

result = client.containers.delete(
container_id="cntr_6901d28b3c8881908b702815828a5bde0380b3408aeae8c7",
extra_body={"custom_llm_provider": "openai"}
)

print(f"Deleted: {result.deleted}")
print(f"Container ID: {result.id}")

Complete Workflow Example​

Here's a complete example showing the full container management workflow:

from openai import OpenAI

# Initialize client
client = OpenAI(
api_key="sk-1234",
base_url="http://localhost:4000"
)

# 1. Create a container
print("Creating container...")
container = client.containers.create(
name="My Code Interpreter Session",
expires_after={
"anchor": "last_active_at",
"minutes": 20
},
extra_body={"custom_llm_provider": "openai"}
)

container_id = container.id
print(f"Container created. ID: {container_id}")

# 2. List all containers
print("\nListing containers...")
containers = client.containers.list(
extra_body={"custom_llm_provider": "openai"}
)

for c in containers.data:
print(f" - {c.id}: {c.name} (Status: {c.status})")

# 3. Retrieve specific container
print(f"\nRetrieving container {container_id}...")
retrieved = client.containers.retrieve(
container_id=container_id,
extra_body={"custom_llm_provider": "openai"}
)

print(f"Container: {retrieved.name}")
print(f"Status: {retrieved.status}")
print(f"Last active: {retrieved.last_active_at}")

# 4. Delete container
print(f"\nDeleting container {container_id}...")
result = client.containers.delete(
container_id=container_id,
extra_body={"custom_llm_provider": "openai"}
)

print(f"Deleted: {result.deleted}")

Container Parameters​

Create Container Parameters​

ParameterTypeRequiredDescription
namestringYesName of the container
expires_afterobjectNoContainer expiration settings
expires_after.anchorstringNoAnchor point for expiration (e.g., "last_active_at")
expires_after.minutesintegerNoMinutes until expiration from anchor
file_idsarrayNoList of file IDs to include in the container
custom_llm_providerstringNoLLM provider to use (default: "openai")

List Container Parameters​

ParameterTypeRequiredDescription
afterstringNoCursor for pagination
limitintegerNoNumber of items to return (1-100, default: 20)
orderstringNoSort order: "asc" or "desc" (default: "desc")
custom_llm_providerstringNoLLM provider to use (default: "openai")

Retrieve/Delete Container Parameters​

ParameterTypeRequiredDescription
container_idstringYesID of the container to retrieve/delete
custom_llm_providerstringNoLLM provider to use (default: "openai")

Response Objects​

ContainerObject​

{
"id": "cntr_123...",
"object": "container",
"created_at": 1234567890,
"name": "My Container",
"status": "active",
"last_active_at": 1234567890,
"expires_at": 1234569090,
"file_ids": []
}

ContainerListResponse​

{
"object": "list",
"data": [
{
"id": "cntr_123...",
"object": "container",
"created_at": 1234567890,
"name": "My Container",
"status": "active"
}
],
"first_id": "cntr_123...",
"last_id": "cntr_456...",
"has_more": false
}

DeleteContainerResult​

{
"id": "cntr_123...",
"object": "container.deleted",
"deleted": true
}

Supported Providers​

ProviderSupport StatusNotes
OpenAI✅ SupportedFull support for all container operations
info

Currently, only OpenAI supports container management for code interpreter sessions. Support for additional providers may be added in the future.